Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
2.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38590254

RESUMO

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Assuntos
Doença de Alzheimer , Canabidiol , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Eixo Encéfalo-Intestino , Cognição , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças
3.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461872

RESUMO

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Endotélio/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo
4.
Sci Total Environ ; 918: 170509, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307273

RESUMO

A significant amount of residual plastic film fragments (RPFF) accumulate in soil because of the widespread use and insufficient recycling of mulch films, substantially contaminating the ecosystem with plastic waste. However, information on RPFF abundance in agricultural soils that use long-term plastic film mulch is limited. In this study, 304 soil samples from 11 cities in Hebei Province, China, were used to examine the presence of RPFF in agricultural soils. We discovered that the main recycling techniques used in Hebei Province were manual picking (48.00%) and manual-mechanical recycling (31.90%), with the majority of recovered mulch (63.15%) disposed as waste. Residual plastic film fragment concentrations ranged from 0.48 to 155.33 kg/ha, with an average of 25.23 kg/ha. The north-central portion of Hebei Province has a more severe residual film pollution problem than the other regions. Notable variations in RPFF amounts were observed among plots planted with different crops and with years of mulching, peaking at 29.50 kg/ha after 5-10 years of mulching. Consequently, to reduce the amount of plastic waste that continues to accumulate in soils owing to agricultural needs, the management of plastic mulch, including its use, recycling, and disposal must be improved.

5.
Rev Neurosci ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381656

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease which damages upper and lower motor neurons (UMN and LMN) innervating the muscles of the trunk, extremities, head, neck and face in cerebrum, brain stem and spinal cord, which results in the progressive weakness, atrophy and fasciculation of muscle innervated by the related UMN and LMN, accompanying with the pathological signs leaded by the cortical spinal lateral tract lesion. The pathogenesis about ALS is not fully understood, and no specific drugs are available to cure and prevent the progression of this disease at present. In this review, we reviewed the structure and associated functions of copper-zinc superoxide dismutase 1 (SOD1), discuss why SOD1 is crucial to the pathogenesis of ALS, and outline the pathogenic mechanisms of SOD1 in ALS that have been identified at recent years, including glutamate-related excitotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, axonal transport disruption, prion-like propagation, and the non-cytologic toxicity of glial cells. This review will help us to deeply understand the current progression in this field of SOD1 pathogenic mechanisms in ALS.

6.
mBio ; 15(3): e0313623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38358252

RESUMO

Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE: Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.


Assuntos
Penaeidae , Viroses , Vírus da Síndrome da Mancha Branca 1 , Animais , Interferons/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Amônia/metabolismo , Resposta ao Choque Térmico
7.
Appl Microbiol Biotechnol ; 108(1): 186, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300290

RESUMO

Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.


Assuntos
Aldeído Liases , Fitosteróis , Androstadienos , Diferenciação Celular , Polienos
8.
J Asian Nat Prod Res ; : 1-9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192122

RESUMO

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.

9.
World J Stem Cells ; 15(10): 960-978, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37970238

RESUMO

Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.

10.
Huan Jing Ke Xue ; 44(11): 6267-6278, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973109

RESUMO

Microplastics(MPs), as a new type of environmental pollutants, have gradually attracted widespread attention since they were introduced by British scientists in 2004. Soil is an important accumulation site for microplastics, which can expand the scope of contamination and accumulate with agricultural practices such as irrigation and tillage. Microplastics in soil cause a variety of toxicities to terrestrial plants. The small particle size, difficult degradation, and strong adsorption capacity bring a challenge to the microplastic pollution treatment of soil. In this study, the toxicity of microplastics to terrestrial plants was reviewed in terms of their direct or indirect toxicity and combined effects with other pollutants, mainly in terms of mechanical injury, induction of oxidative stress, and cytotoxicity and genotoxicity to plants, resulting in plant growth and plant tissue metabolism obstruction. In general, the toxicity of microplastics depended on the polymer type, size, and dose; plant tolerance; and exposure conditions. In addition, the production of secondary microplastics and endogenous contaminants during their degradation in soil enhanced the biotoxicity of microplastics. Further, the physical, chemical, and microbial degradation mechanisms of microplastics were introduced in this study based on the current research. At first, the physical and chemical degradation of microplastics mainly occurred by changing the particle size and surface properties of microplastics and producing intermediates. Then, smaller-sized microplastics and their intermediates could eventually be converted to water and carbon dioxide through physical, chemical, and biological functions. Finally, further prospects regarding soil microplastics were introduced, and we provided information for future improvement and pollution control of microplastics.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Microplásticos/toxicidade , Solo/química , Plásticos/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Agricultura , Plantas , Ecossistema
11.
Mar Drugs ; 21(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999417

RESUMO

In our chemical investigation into Penicillium sp. UJNMF0740 derived from mangrove sediment, fourteen indole diterpene analogs, including four new ones, are purified by multiple chromatographic separation methods, with their structures being elucidated by the analyses of NMR, HR-ESIMS, and ECD data. The antibacterial and neuroprotective effects of these isolates were examined, and only compounds 6 and 9 exhibited weak antibacterial activity, while compounds 5, 8, and 10 showed protective effects against the injury of PC12 cells induced by 6-hydroxydopamine (6-OHDA). Additionally, compound 5 could suppress the apoptosis and production of reactive oxygen species (ROS) in 6-OHDA-stimulated PC12 cells as well as trigger the phosphorylation of PI3K and Akt. Taken together, our work enriches the structural diversity of indole diterpenes and hints that compounds of this skeleton can repress the 6-OHDA-induced apoptosis of PC12 cells via regulating the PI3K/Akt signaling pathway, which provides evidence for the future utilization of this fascinating class of molecules as potential neuroprotective agents.


Assuntos
Diterpenos , Fármacos Neuroprotetores , Penicillium , Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Oxidopamina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Penicillium/química , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Diterpenos/farmacologia , Diterpenos/química , Indóis/farmacologia , Indóis/química , Antibacterianos/farmacologia , Fármacos Neuroprotetores/farmacologia
12.
World J Gastrointest Oncol ; 15(9): 1605-1615, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746641

RESUMO

BACKGROUND: The current prognostic significance of perigastric tumor deposits (TDs) in gastric cancer (GC) remains unclear. AIM: To assess the prognostic value of perigastric TDs and put forward a new TNM staging framework involving TDs for primary GC. METHODS: This study retrospectively analyzed the pathological data of 6672 patients with GC who underwent gastrectomy or surgery for GC with other diseases from January 1, 2012 to December 31, 2017 at the Chinese PLA General Hospital. According to the presence of perigastric TDs or not, the patients were divided into TD-positive and TD-negative groups by using the method of propensity score matching. The differences between TD-positive and TD-negative patients were analyzed using binary logistic regression modeling. The Kaplan-Meier method was used to plot survival curves. Multivariate Cox regression modeling and the log-rank test were used to analyze the data. RESULTS: Perigastric TDs were found to be positive in 339 (5.09%) of the 6672 patients with GC, among whom 237 were men (69.91%) and 102 were women (30.09%) (2.32:1). The median age was 59 years (range, 27 to 78 years). Univariate and multivariate survival analyses indicated that TD-positive GC patients had a poorer prognosis than TD-negative patients (P < 0.05). The 1-, 3-, and 5-year overall survival rates of GC patients with TDs were 68.3%, 19.6%, and 11.2%, respectively, and these were significantly poorer than those without TDs of the same stages. There was significant variation in survival according to TD locations among the GC patients (P < 0.05). A new TNM staging framework for GC was formulated according to TD location. When TDs appear in the gastric body, the original stages T1, T2, and T3 are classified as T4a with the new framework, and the original stages T4a and T4b both are classified as T4b. When TDs appear in the lesser curvature, the previous stages N0, N1, N2, and N3 now both are classified as N3. When TDs appear in the greater curvature or the distant tissue, the patient should be categorized as having M1. With the new GC staging scheme including TDs, the survival curves of patients in the lower grade TNM stage with TDs were closer to those of patients in the higher grade TNM stage without TDs. CONCLUSION: TDs are a poor prognostic factor for patients with primary GC. The location of TDs is associated with the prognosis of patients with primary GC. Accordingly, we developed a new TNM staging framework involving TDs that is more appropriate for patients with primary GC.

13.
World J Gastrointest Surg ; 15(6): 1093-1103, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37405092

RESUMO

BACKGROUND: Preoperative evaluation of frailty is limited to a few surgical procedures. However, the evaluation in Chinese elderly gastric cancer (GC) patients remains blank. AIM: To validate and estimate the prognostic value of the 11-index modified frailty index (mFI-11) for predicting postoperative anastomotic fistula, intensive care unit (ICU) admission, and long-term survival in elderly patients (over 65 years of age) undergoing radical GC. METHODS: This study was a retrospective cohort study which included patients who underwent elective gastrectomy with D2 Lymph node dissection between April 1, 2017 and April 1, 2019. The primary outcome was 1-year all-cause mortality. The secondary outcomes were admission to ICU, anastomotic fistula, and 6-mo mortality. Patients were divided into two groups according to the optimal grouping cutoff of 0.27 points from previous studies: High risk of frailty marked as mFI-11High and low risk of frailty marked as mFI-11Low. Survival curves between the two groups were compared, and univariate and multivariate regression analyses were performed to explore the relationship between preoperative frailty and postoperative complications in elderly patients undergoing radical GC. The discrimination ability of the mFI-11, prognostic nutritional index, and tumor-node-metastasis pathological stage to identify adverse postoperative outcomes was assessed by calculating the area under the receiver operating characteristic (ROC) curve. RESULTS: A total of 1003 patients were included, of which 13.86% (139/1003) were defined as having mFI-11High and 86.14% (864/1003) as having mFI-11Low. By comparing the incidence of postoperative complications in the two groups of patients, it was found that mFI-11High patients had higher rates of 1-year postoperative mortality, admission to ICU, anastomotic fistula, and 6-mo mortality than the mFI-11Low group (18.0% vs 8.9%, P = 0.001; 31.7% vs 14.7%, P < 0.001; 7.9% vs 2.8%, P < 0.001; and 12.2% vs 3.6%, P < 0.001). Multivariate analysis revealed mFI-11 as an independent predictive indicator for postoperative outcome [1-year postoperative mortality: Adjusted odds ratio (aOR) = 4.432, 95% confidence interval (95%CI): 2.599-6.343, P = 0.003; admission to ICU: aOR = 2.058, 95%CI: 1.188-3.563, P = 0.010; anastomotic fistula: aOR = 2.852, 95%CI: 1.357-5.994, P = 0.006; 6-mo mortality: aOR = 2.438, 95%CI: 1.075-5.484, P = 0.033]. mFI-11 showed better prognostic efficacy in predicting 1-year postoperative mortality [area under the ROC curve (AUROC): 0.731], admission to ICU (AUROC: 0.776), anastomotic fistula (AUROC: 0.877), and 6-mo mortality (AUROC: 0.759). CONCLUSION: Frailty as measured by mFI-11 could provide prognostic information for 1-year postoperative mortality, admission to ICU, anastomotic fistula, and 6-mo mortality in patients over 65 years old undergoing radical GC.

15.
Front Plant Sci ; 14: 1150832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223810

RESUMO

Trait plasticity and integration mediate vegetable adaptive strategies. However, it is unclear how patterns of vegetables in root traits influence vegetable adaptation to different phosphorus (P) levels. Nine root traits and six shoot traits were investigated in 12 vegetable species cultivated in a greenhouse with low and high P supplies to identify distinct adaptive mechanisms in relation to P acquisition (40 and 200 P mg kg-1 as KH2PO4). At the low P level, a series of negative correlations among root morphology, exudates and mycorrhizal colonization, and different types of root functional properties (root morphology, exudates and mycorrhizal colonization) respond differently to soil P levels among vegetable species. non-mycorrhizal plants showed relatively stable root traits as compared to solanaceae plants that showed more altered root morphologies and structural traits. At the low P level, the correlation between root traits of vegetable crops was enhanced. It was also found in vegetables that low P supply enhances the correlation of morphological structure while high P supply enhances the root exudation and the correlation between mycorrhizal colonization and root traits. Root exudation combined with root morphology and mycorrhizal symbiosis to observe P acquisition strategies in different root functions. Vegetables respond highly under different P conditions by enhancing the correlation of root traits. Low P supply could significantly improve the direct and indirect ways of mycorrhizal vegetable crops' root traits axis on shoot biomass, and enhance the direct way of non-mycorrhizal vegetable crops' root traits axis and reduce the indirect way of root exudates.

16.
Front Pharmacol ; 14: 1096533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056986

RESUMO

Background: Ischemic stroke seriously threatens human health because of high rates of morbidity, mortality and disability. This study compared the effects of nicotinamide adenine dinucleotide (NAD+) and butylphthalide (NBP) on in vitro and in vivo ischemic stroke models. Methods: Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) model was established in mice, and the cultured primary cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cerebral infarct volume, neurobehavioral indices, antioxidant activity, ATP level and lactic acid content were determined. The neuroprotective effects of NAD+ or NBP were compared using sirtuin inhibitor niacinamide (NAM). Results: Intraperitoneal injection of NBP within 4 h or intravenous injection of NAD+ within 1 h after t-MCAO/R significantly reduced the volume of infarcts, cerebral edema, and neurological deficits. Administration of NAD+ and NBP immediately after t-MCAO/R in mice showed similar neuroprotection against acute and long-term ischemic injury. Both NAD+ and NBP significantly inhibited the accumulation of MDA and H2O2 and reduced oxidative stress. NAD+ was superior to NBP in inhibiting lipid oxidation and DNA damage. Furthermore, although both NAD+ and NBP improved the morphology of mitochondrial damage induced by ischemia/reperfusion, NAD+ more effectively reversed the decrease of ATP and increase of lactic acid after ischemia/reperfusion compared with NBP. NAD+ but not NBP treatment significantly upregulated SIRT3 in the brain, but the sirtuin inhibitor NAM could abolish the protective effect of NAD+ and NBP by inhibiting SIRT1 or SIRT3. Conclusions: These results confirmed the protective effects of NAD+ and NBP on cerebral ischemic injury. NBP and NAD+ showed similar antioxidant effects, while NAD+ had better ability in restoring energy metabolism, possibly through upregulating the activity of SIRT1 and SIRT3. The protection provided by NBP against cerebral ischemia/reperfusion may be achieved through SIRT1.

17.
Small ; 19(23): e2207421, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36890778

RESUMO

The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.

18.
Foods ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36613392

RESUMO

The health benefits of Vaccinium bracteatum are well recorded in ancient Chinese medical books and were also demonstrated by modern researches. However, the relationship between its beneficial functions and specific chemical constituents has not been fully characterized. This study investigated the bioactive small-molecule constituents in the leaves of V. bracteatum, which afforded 32 compounds including ten new ones (1-9) and ten pairs of enantiomers (9-18). Their structures with absolute configurations were elucidated by spectroscopic methods, especially nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) analyses, with 1-4 bearing a novel revolving-door shaped scaffold. While half-compounds exhibited decent antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, all except 19 and 20 exerted significant capturing activity against diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radicals. In addition, the new iridoids 1, 5, 6, and 7 exerted apparent neuroprotective activity toward PC12 cells, with 1 being comparable to the positive control, and selective compounds also displayed anti-diabetic and anti-inflammatory properties by inhibiting α-glucosidase and NO production, respectively. The current work revealed that the bioactive small-molecule constituents could be closely related to the functional food property of the title species.

19.
Dev Comp Immunol ; 139: 104577, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36265592

RESUMO

As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.


Assuntos
Crustáceos , Animais
20.
Front Microbiol ; 14: 1259133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188568

RESUMO

Diarrhea in piglets is one of the most important diseases and a significant cause of death in piglets. Preliminary studies have confirmed that taurine reduces the rate and index of diarrhea in piglets induced by LPS. However, there is still a lack of relevant information on the specific target and mechanism of action of taurine. Therefore, we investigated the effects of taurine on the growth and barrier functions of the intestine, microbiota composition, and metabolite composition of piglets induced by LPS. Eighteen male weaned piglets were randomly divided into the CON group (basal diet + standard saline injection), LPS group (basal diet + LPS-intraperitoneal injection), and TAU + LPS group (basal diet + 0.3% taurine + LPS-intraperitoneal injection). The results show that taurine significantly increased the ADG and decreased the F/G (p < 0.05) compared with the group of CON. The group of TAU + LPS significantly improved colonic villous damage (p < 0.05). The expression of ZO-1, Occludin and Claudin-1 genes and proteins were markedly up-regulated (p < 0.05). Based on 16s rRNA sequencing analysis, the relative abundance of Lactobacilluscae and Firmicutes in the colon was significantly higher in the LPS + TAU group compared to the LPS group (p < 0.05). Four metabolites were significantly higher and one metabolite was significantly lower in the TAU + LPS group compared to the LPS group (p < 0.01). The above results show that LPS disrupts intestinal microorganisms and metabolites in weaned piglets and affects intestinal barrier function. Preventive addition of taurine enhances beneficial microbiota, modulates intestinal metabolites, and strengthens the intestinal mechanical barrier. Therefore, taurine can be used as a feed additive to prevent intestinal damage by regulating intestinal microorganisms and metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...